Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 238: 113910, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640797

RESUMO

This study represents an innovative approach to construct multi-functional nanoplatforms for cancer diagnosis and therapy by combining hyaluronic acid (HA) with iron-platinum nanoparticles (FePt NPs). These HA-coated FePt NPs, referred to as FePt@HA NPs, demonstrated remarkable biocompatibility, high absorption, and excellent light-to-heat conversion properties in the near-infrared (NIR) region, making them ideal candidates for photothermal therapy (PTT). In vitro studies revealed their effective cancer cell eradication under NIR laser irradiation, while in vivo experiments on mice showcased their superior heating capabilities. Moreover, FePt@HA NPs exhibited a distinct and strong photoacoustic (PA) signal, facilitating enhanced and precise intra-tumoral PA imaging. Our results highlight the potential of FePt@HA NPs as promising photothermal agents for future PTT applications. They offer high selectivity, precision, and minimal side effects in cancer treatment, along with their valuable PA imaging application for tumor localization and characterization.


Assuntos
Ácido Hialurônico , Ferro , Nanopartículas Metálicas , Técnicas Fotoacústicas , Terapia Fototérmica , Platina , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Técnicas Fotoacústicas/métodos , Platina/química , Platina/farmacologia , Animais , Camundongos , Ferro/química , Humanos , Nanopartículas Metálicas/química , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Propriedades de Superfície , Linhagem Celular Tumoral
2.
Polymers (Basel) ; 14(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36236077

RESUMO

Stimuli-response polymeric nanoparticles have emerged as a carrier system for various types of therapeutic delivery. In this study, we prepared a dual pH- and thermo-sensitive copolymer hydrogel (HG) system (PNIPAm-co-PAAm HG), using N-isopropyl acrylamide (NIPAm) and acrylamide (AAm) as comonomers. The synthesized PNIPAm-co-PAAm HG was characterized using various instrumental characterizations. Moreover, the PNIPAm-co-PAAm HG's thermoresponsive phase transition behavior was investigated, and the results showed that the prepared HG responds to temperature changes. In vitro drug loading and release behavior of PNIPAm-co-PAAm HG was investigated using Curcumin (Cur) as the model cargo under different pH and temperature conditions. The PNIPAm-co-PAAm HG showed pH and temperature-responsive drug release behavior and demonstrated about 65% Cur loading efficiency. A nearly complete release of the loaded Cur occurred from the PNIPAm-co-PAAm HG over 4 h at pH 5.5 and 40 °C. The cytotoxicity study was performed on a liver cancer cell line (HepG2 cells), which revealed that the prepared PNIPAm-co-PAAm HG showed good biocompatibility, suggesting that it could be applied as a drug delivery carrier. Moreover, the in vitro cytocompatibility test (MTT assay) results revealed that the PNIPAm-co-PAAm HG is biocompatible. Therefore, the PNIPAm-co-PAAm HG has the potential to be useful in the delivery of drugs in solid tumor-targeted therapy.

3.
Carbohydr Polym ; 211: 360-369, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824100

RESUMO

Photothermal therapy (PTT) using chitosan/fucoidan multilayer coating of gold nanorods (CS/F-GNRs) has emerged as an alternative strategy for cancer therapy. In this study, biocompatible CS/F-GNRs were synthesized as a new generation of photothermal therapeutic agents for in vivo cancer treatments owing to their good biocompatibility, photostability, and strong absorption in the near-infrared (NIR) region. The CS/F-GNRs showed a good size distribution (51.87 ± 3.03 nm), and the temperature variation of the CS/F-GNRs increased by 54.4 °C after laser irradiation (1.0 W/cm2) for 5 min. The in vitro photothermal efficiency of CS/F-GNRs indicated that significantly more cancer cells were killed under laser irradiation at 1.0 W/cm2 for 5 min. On the 20th day of treatment, the MDA-MB-231 tumor cells in mice treated with CS/F-GNRs under laser irradiation had almost completely disappeared. Therefore, the biocompatible CS/F-GNRs have shown great promise as safe and highly efficient near-infrared photothermal agents for future cancer therapy.


Assuntos
Quitosana , Ouro , Nanotubos , Neoplasias/terapia , Fototerapia , Polissacarídeos , Animais , Linhagem Celular Tumoral , Quitosana/administração & dosagem , Quitosana/química , Feminino , Ouro/administração & dosagem , Ouro/química , Lasers , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanotubos/química , Neoplasias/patologia , Polissacarídeos/administração & dosagem , Polissacarídeos/química , Carga Tumoral/efeitos dos fármacos
4.
Sci Rep ; 8(1): 500, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323212

RESUMO

Palladium, a near-infrared plasmonic material has been recognized for its use in photothermal therapy as an alternative to gold nanomaterials. However, its potential application has not been explored well in biomedical applications. In the present study, palladium nanoparticles were synthesized and the surface of the particles was successfully modified with chitosan oligosaccharide (COS), which improved the biocompatibility of the particles. More importantly, the particles were functionalized with RGD peptide, which improves particle accumulation in MDA-MB-231 breast cancer cells and results in enhanced photothermal therapeutic effects under an 808-nm laser. The RGD peptide-linked, COS-coated palladium nanoparticles (Pd@COS-RGD) have good biocompatibility, water dispersity, and colloidal and physiological stability. They destroy the tumor effectively under 808-nm laser illumination at 2 W cm-2 power density. Further, Pd@COS-RGD gives good amplitude of photoacoustic signals, which facilitates the imaging of tumor tissues using a non-invasive photoacoustic tomography system. Finally, the fabricated Pd@COS-RGD acts as an ideal nanotheranostic agent for enhanced imaging and therapy of tumors using a non-invasive near-infrared laser.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Nanopartículas Metálicas/química , Paládio/química , Animais , Materiais Biocompatíveis/farmacocinética , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Humanos , Lasers , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia de Fluorescência , Imagem Multimodal , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oligopeptídeos/química , Oligossacarídeos/química , Fotoquimioterapia , Distribuição Tecidual , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...